3.1009 \(\int \frac {\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}}{x^{9/2}} \, dx\)

Optimal. Leaf size=94 \[ \frac {16 \left (\sqrt {x}-1\right )^{3/2} \left (\sqrt {x}+1\right )^{3/2}}{105 x^{3/2}}+\frac {8 \left (\sqrt {x}-1\right )^{3/2} \left (\sqrt {x}+1\right )^{3/2}}{35 x^{5/2}}+\frac {2 \left (\sqrt {x}-1\right )^{3/2} \left (\sqrt {x}+1\right )^{3/2}}{7 x^{7/2}} \]

[Out]

2/7*(-1+x^(1/2))^(3/2)*(1+x^(1/2))^(3/2)/x^(7/2)+8/35*(-1+x^(1/2))^(3/2)*(1+x^(1/2))^(3/2)/x^(5/2)+16/105*(-1+
x^(1/2))^(3/2)*(1+x^(1/2))^(3/2)/x^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {272, 265} \[ \frac {16 \left (\sqrt {x}-1\right )^{3/2} \left (\sqrt {x}+1\right )^{3/2}}{105 x^{3/2}}+\frac {8 \left (\sqrt {x}-1\right )^{3/2} \left (\sqrt {x}+1\right )^{3/2}}{35 x^{5/2}}+\frac {2 \left (\sqrt {x}-1\right )^{3/2} \left (\sqrt {x}+1\right )^{3/2}}{7 x^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]])/x^(9/2),x]

[Out]

(2*(-1 + Sqrt[x])^(3/2)*(1 + Sqrt[x])^(3/2))/(7*x^(7/2)) + (8*(-1 + Sqrt[x])^(3/2)*(1 + Sqrt[x])^(3/2))/(35*x^
(5/2)) + (16*(-1 + Sqrt[x])^(3/2)*(1 + Sqrt[x])^(3/2))/(105*x^(3/2))

Rule 265

Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*
x)^(m + 1)*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1))/(a1*a2*c*(m + 1)), x] /; FreeQ[{a1, b1, a2, b2, c, m,
n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && EqQ[(m + 1)/(2*n) + p + 1, 0] && NeQ[m, -1]

Rule 272

Int[(x_)^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a
1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1))/(a1*a2*(m + 1)), x] - Dist[(b1*b2*(m + 2*n*(p + 1) + 1))/(a1*a2*(m
+ 1)), Int[x^(m + 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a2, b2, m, n, p}, x] && EqQ[a
2*b1 + a1*b2, 0] && ILtQ[Simplify[(m + 1)/(2*n) + p + 1], 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}}{x^{9/2}} \, dx &=\frac {2 \left (-1+\sqrt {x}\right )^{3/2} \left (1+\sqrt {x}\right )^{3/2}}{7 x^{7/2}}+\frac {4}{7} \int \frac {\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}}{x^{7/2}} \, dx\\ &=\frac {2 \left (-1+\sqrt {x}\right )^{3/2} \left (1+\sqrt {x}\right )^{3/2}}{7 x^{7/2}}+\frac {8 \left (-1+\sqrt {x}\right )^{3/2} \left (1+\sqrt {x}\right )^{3/2}}{35 x^{5/2}}+\frac {8}{35} \int \frac {\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}}{x^{5/2}} \, dx\\ &=\frac {2 \left (-1+\sqrt {x}\right )^{3/2} \left (1+\sqrt {x}\right )^{3/2}}{7 x^{7/2}}+\frac {8 \left (-1+\sqrt {x}\right )^{3/2} \left (1+\sqrt {x}\right )^{3/2}}{35 x^{5/2}}+\frac {16 \left (-1+\sqrt {x}\right )^{3/2} \left (1+\sqrt {x}\right )^{3/2}}{105 x^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 41, normalized size = 0.44 \[ \frac {2 \left (\sqrt {x}-1\right )^{3/2} \left (\sqrt {x}+1\right )^{3/2} \left (8 x^2+12 x+15\right )}{105 x^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]])/x^(9/2),x]

[Out]

(2*(-1 + Sqrt[x])^(3/2)*(1 + Sqrt[x])^(3/2)*(15 + 12*x + 8*x^2))/(105*x^(7/2))

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 44, normalized size = 0.47 \[ \frac {2 \, {\left (8 \, x^{4} + {\left (8 \, x^{3} + 4 \, x^{2} + 3 \, x - 15\right )} \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1}\right )}}{105 \, x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(9/2),x, algorithm="fricas")

[Out]

2/105*(8*x^4 + (8*x^3 + 4*x^2 + 3*x - 15)*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1))/x^4

________________________________________________________________________________________

giac [A]  time = 0.29, size = 111, normalized size = 1.18 \[ \frac {4096 \, {\left (35 \, {\left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right )}^{16} - 70 \, {\left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right )}^{12} + 168 \, {\left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right )}^{8} + 224 \, {\left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right )}^{4} + 128\right )}}{105 \, {\left ({\left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right )}^{4} + 4\right )}^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(9/2),x, algorithm="giac")

[Out]

4096/105*(35*(sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))^16 - 70*(sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))^12 + 168*
(sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))^8 + 224*(sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))^4 + 128)/((sqrt(sqrt(x
) + 1) - sqrt(sqrt(x) - 1))^4 + 4)^7

________________________________________________________________________________________

maple [A]  time = 0.05, size = 33, normalized size = 0.35 \[ \frac {2 \sqrt {\sqrt {x}-1}\, \sqrt {\sqrt {x}+1}\, \left (x -1\right ) \left (8 x^{2}+12 x +15\right )}{105 x^{\frac {7}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2)/x^(9/2),x)

[Out]

2/105*(x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2)*(x-1)*(8*x^2+12*x+15)/x^(7/2)

________________________________________________________________________________________

maxima [A]  time = 1.55, size = 31, normalized size = 0.33 \[ \frac {16 \, {\left (x - 1\right )}^{\frac {3}{2}}}{105 \, x^{\frac {3}{2}}} + \frac {8 \, {\left (x - 1\right )}^{\frac {3}{2}}}{35 \, x^{\frac {5}{2}}} + \frac {2 \, {\left (x - 1\right )}^{\frac {3}{2}}}{7 \, x^{\frac {7}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(9/2),x, algorithm="maxima")

[Out]

16/105*(x - 1)^(3/2)/x^(3/2) + 8/35*(x - 1)^(3/2)/x^(5/2) + 2/7*(x - 1)^(3/2)/x^(7/2)

________________________________________________________________________________________

mupad [B]  time = 5.04, size = 55, normalized size = 0.59 \[ \frac {\sqrt {\sqrt {x}-1}\,\left (\frac {2\,x\,\sqrt {\sqrt {x}+1}}{35}-\frac {2\,\sqrt {\sqrt {x}+1}}{7}+\frac {8\,x^2\,\sqrt {\sqrt {x}+1}}{105}+\frac {16\,x^3\,\sqrt {\sqrt {x}+1}}{105}\right )}{x^{7/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^(1/2) - 1)^(1/2)*(x^(1/2) + 1)^(1/2))/x^(9/2),x)

[Out]

((x^(1/2) - 1)^(1/2)*((2*x*(x^(1/2) + 1)^(1/2))/35 - (2*(x^(1/2) + 1)^(1/2))/7 + (8*x^2*(x^(1/2) + 1)^(1/2))/1
05 + (16*x^3*(x^(1/2) + 1)^(1/2))/105))/x^(7/2)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x**(1/2))**(1/2)*(1+x**(1/2))**(1/2)/x**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________